Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(15): 8285-8303, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588092

RESUMO

The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, ß-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.


Assuntos
Caseínas , Leite , Animais , Leite/metabolismo , Caseínas/metabolismo , Lactalbumina/metabolismo , Lactoglobulinas/metabolismo , Dieta
2.
Int J Biol Macromol ; 262(Pt 1): 130006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331067

RESUMO

The processing characteristics of yogurt are closely related to the composition and arrangement of exopolysaccharides (EPS) in lactic acid bacteria (LAB). To fully understand and develop the functional properties of EPS and to study the effect of EPS molecular weight on yogurt and its mechanism, the physicochemical properties of high molecular weight EPS-LH43, medium molecular weight EPS-LH13, and low molecular weight EPS-LH23, as well as the gel properties and protein conformation of yogurt, were determined and analyzed in this experiment. The results indicate that EPS-LH43 and EPS-LH13 are both composed of mannose, rhamnose, galacturonic acid, glucose, and galactose. EPS-LH23 is composed of mannose, galacturonic acid, glucose, and galactose. Their Number-average Molecular Weight is 5.21 × 106 Da, 2.39 × 106 Da and 3.76 × 105 Da, respectively. In addition, all three types of EPS have good thermal stability and can improve the stability of casein. In addition, the analysis of the texture, particle size, potential, water holding capacity, rheology, low field nuclear magnetic resonance, microstructure, and flavor characteristics of yogurt confirmed the relationship between the molecular weight of LAB EPS and the gel properties of yogurt. Fluorescence spectrophotometer and circular dichroism analysis indicate that the different molecular weights of LAB EPS have different effects on protein structure, which is an intrinsic factor leading to significant differences in the gel properties of the three types of fermented milk. These findings provide new references for enhancing the understanding of the structure-activity relationship of EPS and indicate that EPS-LH43 can be used to improve the gel properties of dairy products.


Assuntos
Ácidos Hexurônicos , Lactobacillus helveticus , Iogurte , Iogurte/microbiologia , Polissacarídeos Bacterianos/química , Peso Molecular , Galactose/análise , Manose , Glucose/análise , Fermentação
3.
Int J Biol Macromol ; 246: 125639, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394217

RESUMO

Probiotic products that contain lactobacilli have long histories of safe use as Lactobacillus strains have many physiological functions in the gastrointestinal tract (GIT). However, the viability of probiotics can be affected by food processing and the adverse environment. This study investigated the O/W (Oil-in-water emulsions) emulsions formed by coagulation of casein/GA (Gum Arabic) complexes for Lactiplantibacillus plantarum microencapsulation, and the stability of the strains during gastrointestinal environment were also determined. The results showed that the particle size of the emulsion decreased from 9.72 µm to 5.48 µm when the GA concentration increased from 0 to 2 (w/v), and the emulsion particles were found to be more uniform as observed by CLSM (Confocal Laser Scanning Microscope). The surface of this microencapsulated casein/GA composite forms smooth, dense agglomerates and has high viscoelasticity, which effectively improved casein's emulsifying activity (8.66 ± 0.17 m2/g). After the casein/GA complexes microencapsulation, a higher viable count was detected after gastrointestinal digestion in vitro, and the activity of L. plantarum is more stable (about 7.51 log CFU/mL) during 35 days of storage at 4 °C. The results of study will help to design lactic acid bacteria encapsulation systems based on the GIT environment for the oral delivery strategy.


Assuntos
Lactobacillus plantarum , Probióticos , Goma Arábica , Caseínas , Emulsões , Lactobacillus , Trato Gastrointestinal/microbiologia , Lactobacillus plantarum/fisiologia
4.
J Agric Food Chem ; 71(1): 974-984, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36550784

RESUMO

Although fresh-cut button mushrooms are popular with consumers, quality deterioration presents a significant shelf-life challenge. In this study, fresh-cut button mushrooms were treated with 0.25 g/L l-cysteine (l-Cys) and evaluated in terms of quality, physiology, and transcriptome sequencing. The results indicated that l-Cys application significantly delayed the browning degree of fresh-cut button mushrooms and reduced weight loss. l-Cys treatment reduced the malondialdehyde content, lipoxygenase activity, and reducing sugar levels while enhancing the soluble protein and total phenolic content. Furthermore, l-Cys treatment reduced the O2- generation rate and H2O2 accumulation while enhancing the catalase activity. Moreover, l-Cys improved the superoxide dismutase, glutathione reductase, and phenylalanine ammonia-lyase activities while reducing those of polyphenol oxidase and peroxidase. Additionally, l-Cys treatment increased endogenous H2S production and AbCBS enzyme activity while decreasing AbCSE enzyme activity. Notably, additional treatment with 1 mM propargylglycine significantly reduced the effect of l-Cys. Moreover, transcriptome sequencing analysis indicated that the differentially expressed genes in the l-Cys group were primarily related to the reactive oxygen species metabolism, oxidoreductase process, membrane integrality, and sulfur metabolism. These findings suggested that l-Cys treatment delayed the aging and extended the shelf life of fresh-cut button mushrooms by regulating the active oxygen species metabolism and water loss and stimulating endogenous H2S production.


Assuntos
Cisteína , Peróxido de Hidrogênio , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredutases , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...